The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop.

نویسندگان

  • Ganhui Lan
  • Yuhai Tu
چکیده

The incoherent type-1 feed-forward loop (I1-FFL) is ubiquitous in biological regulatory circuits. Although much is known about the functions of the I1-FFL motif, the energy cost incurred in the network and how it affects the performance of the network have not been investigated. Here, we study a generic I1-FFL enzymatic reaction network modelled after the GEF-GAP-Ras pathway responsible for chemosensory adaptation in eukaryotic cells. Our analysis shows that the I1-FFL network always operates out of equilibrium. Continuous energy dissipation is necessary to drive an internal phosphorylation-dephosphorylation cycle that is crucial in achieving strong short-time response and accurate long-time adaptation. In particular, we show quantitatively that the energy dissipated in the I1-FFL network is used (i) to increase the system's initial response to the input signals; (ii) to enhance the adaptation accuracy at steady state; and (iii) to expand the range of such accurate adaptation. Moreover, we find that the energy dissipation rate, the catalytic speed and the maximum adaptation accuracy in the I1-FFL network satisfy the same energy-speed-accuracy relationship as in the negative-feedback-loop (NFL) networks. Because the I1-FFL and NFL are the only two basic network motifs that enable accurate adaptation, our results suggest that a universal cost-performance trade-off principle may underlie all cellular adaptation processes independent of the detailed biochemical circuit architecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Position Control Improvement of Permanent Magnet Motor Using Model Predictive Control

Fast and accurate transient response is the main requirement in electric machine position control. Conventional cascade control structure has sluggish response due to the limitation of inner control loop bandwidth. In this paper, in order to decrease the Permanent Magnet Synchronous Motor (PMSM) transient response time it can be used reference model using feed-forward signals. In this structure...

متن کامل

A Quantitative Model of Glucose Signaling in Yeast Reveals an Incoherent Feed Forward Loop Leading to a Specific, Transient Pulse of Transcription

The ability to design and engineer organisms demands the ability to predict kinetic responses of novel regulatory networks built from well-characterized biological components. Surprisingly, few validated kinetic models of complex regulatory networks have been derived by combining models of the network components. A major bottleneck in producing such models is the difficulty of measuring in vivo...

متن کامل

The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli.

Complex gene regulation networks are made of simple recurring gene circuits called network motifs. One of the most common network motifs is the incoherent type-1 feed-forward loop (I1-FFL), in which a transcription activator activates a gene directly, and also activates a repressor of the gene. Mathematical modeling suggested that the I1-FFL can show two dynamical features: a transient pulse of...

متن کامل

A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes

Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mix...

متن کامل

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 87  شماره 

صفحات  -

تاریخ انتشار 2013